Science & research

Simon Collins
HIV i-Base

i) why we need evidence and not just expert opinion

ii) trial design and research
Activist training

• The CAB is a treatment advocacy network rooted in science and research because healthcare in the UK is based on “evidence-based medicine”

• A basic understanding of research is essential – lifelong process

• We need to be able to explain this approach to others
Activist training: skills and practice

Our experience

What we learn

thinking, reading, talking, listening, writing

Communicating and teaching
Introduction

• Please write notes throughout
• Glossary – keep a list of new terms and words
• The training will include new tools to understand and explain research
• Please report at least one session for the training report
• Please ask questions
• Please provide feedback
Clinical research

• Every study starts with an idea – sometimes called a theory or question or hypothesis
 \textit{Write down three study questions}

• Different types of studies produce different types of results
 \textit{Write down three types of studies}

• Every study tells a story – we need to understand the story first before we can explain it to anyone else
 \textit{List three recent health studies}
Study format

- Title – summary of research (impartial, not showing results?)
- Background – why the study is important
- Methods – outline of what will be done
- Results – outcome – what was observed
- Discussion – implications, strengths and weaknesses of the study
- Conclusion – summary of what was proven or not.

Read everything by asking questions
Clinical evidence

- Studies can prove a theory, disprove a theory or need further studies to answer the question
- By definition a study can be repeated something is true
- Research involves extending results from a small to a large group of people
- Relatively recent – mainstream since 1950
- *Give examples of successful studies and also give reasons why results may not be repeatable*
Results are repeatable and generalisable

Research study

- $n = 500$

Population results

- $n = 500,000$

Research needs to be designed so that there is confidence in the results to use them on a population level…
Randomised clinical trial - RCT

Enrollment:
- Assessed for Eligibility
 - Excluded

Allocation:
- Randomized
 - Allocated to Intervention
 - Did Not Receive Intervention
 - Allocated to Intervention
 - Did Not Receive Intervention

Follow-Up:
- Received Intervention
 - Did Not Receive Intervention
 - Discontinued Intervention
 - Lost to Follow-Up
- Received Intervention
 - Did Not Receive Intervention
 - Discontinued Intervention
 - Lost to Follow-Up

Analysis:
- Followed Up
 - Not Analyzed
 - Analyzed
- Followed Up
 - Not Analyzed
 - Analyzed

Clinical evidence – examples

- Citrus fruit and scurvy *
- Streptomycin for TB *
- START – Using ART when CD4 is >500 vs 350 cells/mm3
- PARTNER – what is the risk of transmission when viral load is <50 c/mL

* http://en.wikipedia.org/wiki/Randomized_controlled_trial
James Lind - Scurvy

Background: Sailors health at sea
Methods: N=12 scorbutic sailors into six groups of two.

- They all received the same diet, plus:
 - Group 1 - a quart of cider daily,
 - Group 2 - twenty-five drops of elixir of vitriol (sulfuric acid),
 - Group 3 - six spoon of vinegar,
 - Group 4 – 0.5 pints of seawater,
 - Group 5 - two oranges and one lemon
 - Group 6 - a spicy paste plus a drink of barley water.

Results
- The treatment of group five stopped after six days when they ran out of fruit, but by that time one sailor was fit for duty while the other had almost recovered. Apart from that, only group one also showed some effect of its treatment.

Conclusion - ??
Streptomycin – BMJ 1948

Background: TB – no available treatment
Methods: N=107 - randomised to streptomycin (n=55) - 0.5 mg IM, every 6 hours for 4 months vs control (n=52). Not aware of study!
Results: 7% (n=4) vs 27% (n=14) deaths within 6 months – statistically significant – less than 1% likelihood it could happen by chance; and 51% (n=28) vs 8% (n=4) improved (<0.001% by chance); esp in most sick.
Conclusion - ??

• http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2091872/
Research example (Streptomycin – BMJ 1948)

Background: What was the study question?

Methods:
• What type of experiment was designed to answer the question?
• How? With what? Measuring what?

Results:
• Who were studied – what type of people?
• What was observed? – were there differences between people?
• Were results significant?

Discussion
• What else was important? Were there risks? What other studies are needed? What can we interpret?

Conclusion
• Was the question answered? How can the results be used?
Evidence vs opinion

• Evidence-based medicine was only recently formalised - since 1988
• Balance of the risks vs benefits of any intervention based on available evidence
• Categorise evidence based on the quality of the study
• Formalised in guidelines – often one category for the quality of the study and another for the strength of the recommendation
START study

• Balance of the risks vs benefits of starting treatment at CD4 >500 vs 350 cells/mm3

• Flow chart – study design

• What are the primary and secondary objectives?

• Any surprises?

• See Sabin et al review for background.
TasP: available evidence

Table 1. HIV transmission in serodiscordant couples on ART and PY of follow-up of condom-less sex

<table>
<thead>
<tr>
<th>Reference</th>
<th>Type of study</th>
<th>Setting</th>
<th>VL lower limit of detection, copies/ml</th>
<th>Transmissions on ART, n</th>
<th>Estimated HIV transmission per 100 PY (95% CI)</th>
<th>Proportion of couples having condom-less sex, %</th>
<th>Follow-up index case on ART and having condom-less sex, PY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohen, et al. [1]</td>
<td>Randomized controlled trial</td>
<td>Heterosexual couples; 13 sites in 9 countries</td>
<td><400</td>
<td>1</td>
<td>0.1 (0.0, 0.4)</td>
<td>7</td>
<td>63.4</td>
</tr>
<tr>
<td>Attia, et al. [6]</td>
<td>Systematic review and meta-analysis</td>
<td>Two cohort studies including serodiscordant heterosexual couples on ART with VL<400 copies/ml [7,8]</td>
<td><400</td>
<td>0</td>
<td>0 (0, 1.27)</td>
<td>25</td>
<td>218.25</td>
</tr>
<tr>
<td>Donnell, et al. [3]</td>
<td>Observational cohort</td>
<td>Heterosexual couples; 14 sites in 7 African countries</td>
<td>240</td>
<td>1*</td>
<td>0.37 (0.09, 2.04)</td>
<td>7</td>
<td>19.1</td>
</tr>
<tr>
<td>Reynolds, et al. [9]</td>
<td>Observational cohort</td>
<td>Heterosexual couples; Rakai Study, Uganda</td>
<td><400</td>
<td>0</td>
<td>0 (0, 5.98)</td>
<td>46</td>
<td>28.9</td>
</tr>
</tbody>
</table>

*Genetically linked HIV-1 transmission. ART, antiretroviral therapy; PY, person-years; VL, viral load.

TasP: available evidence

<table>
<thead>
<tr>
<th>Study (n = couples)</th>
<th>No of transmissions</th>
<th>Rate per 100 PYFU (95%CI)</th>
<th>% couples no condoms</th>
<th>F/U time with risk (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPTN-052 (n=1763)</td>
<td>1</td>
<td>0.1 (0.0, 0.4)</td>
<td>7</td>
<td>63.4</td>
</tr>
<tr>
<td>Meta-analysis (n=93+393)</td>
<td>0</td>
<td>0 (0, 1.27)</td>
<td>25</td>
<td>218.25</td>
</tr>
<tr>
<td>Partners (n=3381)</td>
<td>1</td>
<td>0.37 (0.09, 2.04)</td>
<td>7</td>
<td>19.1</td>
</tr>
<tr>
<td>Rakai (n=32)</td>
<td>0</td>
<td>0 (0, 5.98)</td>
<td>46</td>
<td>28.9</td>
</tr>
</tbody>
</table>

Adapted from Rodger et al. Antiviral Therapy 2013; 18:285–287
START Study

http://insight.ccbr.umn.edu/

VERY EXCITING – >4000 people with CD4 counts above 500 randomised to early vs late

PARTNER Study

http://www.partnerstudy.eu/

VERY EXCITING – follows pos/neg couples for HIV transmissions when VL is undetectable
Thanks

simon.collins@i-base.org.uk

www.i-base.info

www.ukcab.net