## Community feedback: CROI 2019

## i-base

Simon Collins HIV i-Base www.i-Base.info



CROI 2019 feedback: www.i-Base.info

## **CROI 2019: selection**

- UK case of remission
- ART: Long-acting injections, strategies and pipeline drugs
- Integrase and weight
- PrEP: TAF, bNAbs, vaginal insert, retention Slides are all from CROI 2019 original talks.

## SUSTAINED HIV-1 REMISSION FOLLOWING HOMOZYGOUS CCR5 DELTA32 ALLOGENIC HSCT

#### Ravindra K. Gupta

University College London London, United Kingdom

Disclosure:

Self: Research grant/grant pending from Wellcome Trust; consulting or advisor fees from ViiV Healthcare, Inc.; speaker's bureau for Gilead Sciences



### HIV-1 and CCR5 as a target for remission



- CCR5 is the most commonly used coreceptor used to enter CD4+ target cells
- $\triangle$  32 mutation is a 32 base pair deletion in CCR5, preventing expression.
- 1% of Europeans are  $\triangle$ 32 homozygous and resistant to R5 HIV-1

## **Case History**

- HIV-1 Diagnosis 2003
- 2013: Stage IVb Hodgkin lymphoma
  Atripla initiated. Viral suppression achieved
  Switch to TDF/FTC/Raltegravir (ABVD chemo)
- Failed multiple lines of chemotherapy and mobilisation for auto SCT
- Donor registry search for allo HSCT
  - Unrelated 9/10 HLA high-resolution match.
  - Donor homozoygous CCR5-d32 mutation



## 'The London Patient' Timothy Brown

- Homozygous for wild type CCR5
- Infection with R5 using virus
- Hodgkin Lymphoma
- Single HSCT
- No irradiation
- Reduced intensity conditioning
- T cell depletion with aCD52
- Mild GVH
- 100% T cell donor chimerism

- Heterozygous for  $\_32$
- Infection with R5 using virus
- Acute Myelogenous Leukemia
- Two HSCT
- Total Body Irradiation
- Full intensity conditioning
- T cell depletion with ATG
- Mild GVH
- 100% T cell donor chimerism

## **CROI 2019: ART and drugs**

- Persistent low level viral load
- Cabotegravir/rilpivirine LA injections
- ART: Long-acting injections, strategies and pipeline drugs
- Maturation inhibitor, capsid inhibitor, PGT-121 bNAb
- ART and weight gain

CROI 2019 feedback: www.i-Base.info

### NONSUPPRESSIBLE VIREMIA ON ART FROM LARGE CELL CLONES CARRYING INTACT PROVIRUSES

Elias K. Halvas

University of Pittsburgh Pittsburgh, PA, USA

Disclosure: Nothing to Disclose



### Non-Suppressible Viremia

- Can be caused by clonal proliferation of CD4<sup>+</sup> T-cells carrying replication-competent proviruses: "Repliciones"
  - Some cells within the clones are producing virions
  - Clones are large  $(10^7 10^8 \text{ cells})$  but overall are rare integrants (0.03 1%)
  - Intact proviruses are intragenic, within introns and in either orientation to gene

#### Clinical Implications

- Clinically-detectable viremia may not be due to non-adherence or drug resistance

#### Cure Implications

- Smaller clones may be producing infectious virus throughout lymphoid organs
- May fuel rapid viremia rebound off ART
- Need to eliminate or suppress repliciones!
- Have the potential to regrow.

#### Unanswered Questions

Mechanisms of clonal escape?

CROI 2019 feedback: www.i-Base.info



### LONG-ACTING CABOTEGRAVIR + RILPIVIRINE FOR MAINTENANCE THERAPY: ATLAS WEEK 48 RESULTS

<u>S Swindells</u>,<sup>1</sup> JF Andrade-Villanueva,<sup>2</sup> GJ Richmond,<sup>3</sup> G Rizzardini,<sup>4</sup> A Baumgarten,<sup>5</sup> M Masiá,<sup>6</sup> G Latiff,<sup>7</sup> V Pokrovsky,<sup>8</sup> JM Mrus,<sup>9</sup> J Huang,<sup>10</sup> KJ Hudson,<sup>9</sup> DA Margolis,<sup>9</sup> KY Smith,<sup>9</sup> P Williams,<sup>11</sup> WR Spreen<sup>9</sup>

<sup>1</sup>University of Nebraska Medical Center, Omaha, NE, United States; <sup>2</sup>University of Guadalajara, Guadalajara, Mexico; <sup>3</sup>Broward Health Medical Center, Fort Lauderdale, FL, United States; <sup>4</sup>Fatebenefratelli Sacco Hospital, Milan, Italy; <sup>5</sup>Center for Infectious Diseases, ZIBP, Berlin, Germany; <sup>6</sup>Hospital General Universitario de Elche, Alicante, Spain; <sup>7</sup>Maxwell Centre, Durban, South Africa; <sup>8</sup>Central Research Institute of Epidemiology, Moscow, Russian Federation; <sup>9</sup>ViiV Healthcare, Research Triangle Park, NC, United States; <sup>10</sup>GlaxoSmithKline\_Mississauga\_ON\_Canada; <sup>11</sup>Jappsen\_Research and Development\_Beerse\_Belgium

CROI 2019 feedback: www.i-Base.info

ATLAS Study Design: Randomized, Multicenter, International, Open-Label, Noninferiority Study in Adults with Virologic Suppression (Ongoing)



ART, antiretroviral therapy; CAB, cabotegravir; CAR, current antiretroviral; IM, intramuscular; INSTI, integrase strand transfer inhibitor; LA, long-acting; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside RTI; PI, protease inhibitor; RPV, rilpivirine; VL, viral load.

\*Uninterrupted ART 6 months and VL <50 c/mL at Screening, 2× VL <50 c/mL ≤12 months; †INSTI-based regimen capped at 40% of enrollment; Triumeq excluded from study; ‡Optional switch to CAB LA + RPV LA at Week 52 for those on CAR; §Participants who withdraw/complete IM CAB LA + RPV LA must complete

52 weeks of follow-up; Participants received an initial loading dose of CAB LA (600 mg) and RPV LA (900 mg) at Week 4b. From Week 8 onwards, participants received CAB LA (400 mg) + RPV LA (600 mg) injections every 4 weeks.

#### CROI 2019 feedback: www.i-Base.info

ATLAS Virologic Snapshot Outcomes at Week 48 for ITT-E: Noninferiority Achieved for Primary and Secondary Endpoints



CAB, cabotegravir; CAR, current antiretroviral; CI, confidence interval; ITT-E, intention-to-treat exposed; LA, long-acting; NI, noninferiority; RPV, rilpivirine. \*Adjusted for sex and baseline third agent class.

CROI 2019 feedback: www.i-Base.info

### **ATLAS Injection Site Reactions**



• The majority (99%,1439/1460) of ISRs were grade 1–2 and most (88%) resolved within ≤7 days

CAB, cabotegravir; IM, intramuscular; ISR, injection site reaction; LA, long-acting; RPV, rilpivirine. Bars represent incidence of onset ISRs relative to the most recent IM injection visit.

CROI 2019 feedback: www.i-Base.info



### LONG-ACTING CABOTEGRAVIR + RILPIVIRINE FOR HIV MAINTENANCE: FLAIR WEEK 48 RESULTS

<u>Chloe Orkin</u>,<sup>1</sup> Keikawus Arasteh,<sup>2</sup> Miguel Górgolas Hernández-Mora,<sup>3</sup> Vadim Pokrovsky,<sup>4</sup> Edgar T. Overton,<sup>5</sup> Pierre-Marie Girard,<sup>6</sup> Shinichi Oka,<sup>7</sup> Ronald D'Amico,<sup>8</sup> David Dorey,<sup>9</sup> Sandy Griffith,<sup>8</sup> David A Margolis,<sup>8</sup> Peter Williams,<sup>10</sup> Wim Parys,<sup>10</sup> William R Spreen<sup>8</sup>

<sup>1</sup>Queen Mary University, London, United Kingdom; <sup>2</sup>EPIMED GmbH, Berlin, Germany; <sup>3</sup>Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; <sup>4</sup>Central Institute of Epidemiology, Moscow, Russian Federation; <sup>5</sup>University of Alabama at Birmingham, Birmingham, AL, United States; <sup>6</sup>Hôpital Saint Antoine, Paris, France; <sup>7</sup>National Center for Global Health and Medicine, Tokyo, Japan; <sup>8</sup>ViiV Healthcare, Research Triangle Park, NC, United States; <sup>9</sup>GlaxoSmithKline, Mississauga, Ontario, Canada; <sup>10</sup>Janssen Research and Development, Beerse, Belgium

CROI 2019 feedback: www.i-Base.info

FLAIR Study Design: Randomized, Multicenter, International, Open-Label, Noninferiority Study in ART-Naïve Adults (Ongoing)



CROI 2019 feedback: www.i-Base.info

#### FLAIR Virologic Snapshot Outcomes at Week 48 for ITT-E: Noninferiority Achieved for Primary and Secondary Endpoints



noninferiority; RPV, rilpivirine.

\*Adjusted for sex and baseline HIV-1 RNA (< vs ≥100,000 c/mL).

CROI 2019 feedback: www.i-Base.info

## A PHASE IIA STUDY OF NOVEL MATURATION INHIBITOR GSK2838232 IN HIV PATIENTS

#### **Edwin DeJesus**

Orlando Immunology Center Orlando, FL, USA

Disclosure:

re: Self: Consulting or advisor fees from Gilead Sciences, Janssen Therapeutics, Theratechnologies Inc.; speaker's bureau for Gilead Sciences, Theratechnologies Inc.

## **Background and Objectives**

- In vitro, GSK2838232 has been found to have:1
  - A mean 50% maximal inhibitory concentration (IC<sub>50</sub>) value of 1.6 nM (range: 0.8 to 4.3 nM)
  - Minimal impact of protein binding
  - A broad spectrum and potent virologic profile
  - Inhibited HIV-1 strains containing the polymorphism in the consensus Sp1 QVT region
- Clinical studies in healthy volunteers have found GSK2838232 co-administered with ritonavir:<sup>2</sup>
  - Has a mean half-life of 34 hours
  - Achieved steady-state by Day 4 to 7 for the once-daily dose
  - Has a well-defined PK, safety, and tolerability profile
- This **proof-of-concept Phase IIa study** assessed the safety and tolerability, antiviral activity and PK of GSK2838232 co-administered once daily orally with cobicistat in HIV-1-infected adults

 $\ensuremath{\mathsf{HIV}}\xspace,$  human immunodeficiency virus; PK, pharmacokinetics.

<sup>2Johnso</sup>CROP2019/feedback//www.i-Base/info



 $AUC_{(0-r)}$ , area under the curve over the dosing interval;  $C_{max}$ , maximum observed

CROI 2019 feedback: www.i-Base.info

# Antiviral Activity of GSK'232 Robust reductions in 50 mg, 100 mg, and 200 mg cohorts; maximal effect in 200 mg cohort

|                                                                               |         | Change from baseline in plasma HIV-1 RNA |                                                                           | <b>20 mg</b><br>(n=7)      | <b>50 mg</b><br>(n=8)      | <b>100 mg</b><br>(n=10)    | <b>200 mg</b><br>(n=8)     |
|-------------------------------------------------------------------------------|---------|------------------------------------------|---------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| c ار                                                                          | 0.5     | Т                                        | Plasma HIV RNA (copies/mL)                                                |                            |                            |                            |                            |
| Mean change from baseline ± 95 <sup>(</sup><br>(SE) HIV-1 RNA (log10 copies/r | 0.0     |                                          | Max. decline from baseline,<br>mean (SD)                                  | <b>-42,095</b><br>(37,576) | <b>-49,066</b><br>(71,340) | <b>-32,948</b><br>(54,291) | <b>-33,149</b><br>(31,786) |
|                                                                               | -0.5    |                                          | Max. decline from baseline<br>(log <sub>10</sub> -transformed), mean (SD) | <b>-0.67</b> (0.41)        | <b>-1.56</b> (0.67)        | <b>-1.32</b> (0.44)        | <b>-1.70</b> (0.38)        |
|                                                                               |         |                                          | >1.5 log <sub>10</sub> copies/mL decrease<br>from baseline, n (%)         | 0                          | <b>2</b> (25)              | <b>2</b> (20)              | <b>5</b> (63)              |
|                                                                               | -1.<br> |                                          | <400 copies/mL, n (%)                                                     | 0                          | <b>2</b> (25)              | <b>2</b> (20)              | <b>4</b> (50)              |
|                                                                               | '       | • 20 MG<br>• 50 MG<br>• 100 MG           | CD4 count                                                                 |                            |                            |                            |                            |
|                                                                               | -2.0    | • 200 MG<br>                             | Change from baseline,<br>mean (SD)                                        | <b>-1.4</b> (95.3)         | <b>52.0</b> (145.4)        | <b>40.7</b> (94.5)         | <b>11.1</b> (75.2)         |
|                                                                               |         | (BL) Study Day (FU)                      |                                                                           |                            |                            |                            |                            |

BL, baseline; CI, confidence interval; FU, follow-up; HIV, human immunodeficiency virus; SD, standard deviation; SE, standard error

CROI 2019 feedback: www.i-Base.info



## SAFETY AND PK OF SUBCUTANEOUS GS-6207, A NOVEL HIV-1 CAPSID INHIBITOR

#### Jennifer E. Sager

Gilead Sciences Foster City, CA, USA

Disclosure: Self: Employment at and stock/stock options in Gilead Sciences



## GS-6207: First-in-Class HIV Capsid Inhibitor



• HIV capsid is essential at multiple stages in the viral life cycle

CROI 2019 feedback: www.i-Base.info



• At doses ≥100 mg, GS-6207 plasma concentrations at 12 weeks were above the paEC<sub>95</sub> of 3.87 ng/mL \*EC<sub>95</sub> determined in MT-4 T-Cell Line with WT HIV-1 (IIIB strain). C<sub>w12</sub>, GS-6207 plasma concentration on Day 84; IQ, inhibitory quotient; paEC<sub>95</sub>, protein adjusted EC<sub>95</sub>

CROI 2019 feedback: www.i-Base.info

UK-CAB April 2019 2



## THERAPEUTIC ACTIVITY OF PGT121 MONOCLONAL ANTIBODY IN HIV-INFECTED ADULTS

#### Kathryn E. Stephenson

Beth Israel Deaconess Medical Center Boston, MA, USA

Disclosure: Nothing to Disclose







Slide adapted from Malcolm Martin presentation at CROI 2018

UK-CAB April 2019

CROI 2019 feedback: www.i-Base.info

bNAbs show a continuum of potency and breadth

•

Different bNAbs target different parts of HIV-1 • envelope protein (gp120)



**bNAb** Ta

MPER • 10E8

CD4

• 3BNC117

 VRC01 • VRC07-523

CD4-binding site b12, VRC01, VRC07, NIH45-46, 3BNC117, VRC-PG04 PG9, PG16, CH01-04, PGT141-145, PGDM1400 V3/Asn332 glycan patch PGT121-123, PGT125-131, PGT135, 10-1074, 2G12 gp120/gp41-interface PGT151, 35022, 8ANC195 2F5, 4E10, 10E8 Slide adapted from Dan Kuritzkes presentation at CROI 2018

### **PGT121 Monoclonal Antibody**

- Human IgG1 mAb targeting V3 Env epitope (IAVI, Theraclone, Scripps)
- Potent neutralizer of 60-70% of global HIV-1 viruses
- Therapeutic and preventive efficacy in rhesus monkeys:
  - Decreased viral load (VL) in SHIV-infected monkeys
  - Delayed rebound following ATI when combined with TLR7 agonist
  - Protected against SHIV challenge at <5 ug/ml concentration</li>
- Here we present the first-in-human phase 1 clinical trial of PGT121

Walker et al. Nature 2011:466; Julg et al. Sci Transl Med. 2017 Sep 20;9(408); Barouch et al. Nature. 2013:224-8; Borducchi et al. Nature. 2018:360-364; Moldt et al. Proc Natl Acad Sci. 2012:18921-5. CROI 2019 feedback: www.i-Base.info UK-CAB April 2019

#### Antiviral Activity of PGT121 in High Viral Load Group (Baseline VL 3.3-5 log cp/mL, N=9)



#### **High Viral Load Group: Responders**



CROI 2019 feedback: www.i-Base.info

#### Low Viral Load Group: Participant 3D-A



CROI 2019 feedback: www.i-Base.info

## Summary

- Safe and well-tolerated, including by SC route
- Half-life **23** days (13 days in viremic, HIV-infected)
- Therapeutic efficacy in individuals with baseline VL 3.3-5 log cp/ml:
  - **5/9** participants responded
  - Median **1.7** log drop in 7-10 days with rebound at 21-28 days
  - All responders had PGT121-sensitive viruses at baseline
  - All rebound viruses were PGT121-resistant
  - Detailed sequence analysis is pending

## Summary

- Therapeutic efficacy in individuals with baseline VL <3.3 log cp/ ml:
  - 2 participants sustained suppression for <u>> 6 months</u>
  - This is the longest observed suppression following a single bNAb infusion in a viremic HIV-infected individual
  - No evidence of enhanced cellular immune responses
  - Long-term virologic suppression likely due to exquisite potency of PGT121, even at levels below the limit of quantitation

### RISK FACTORS FOR EXCESS WEIGHT GAIN FOLLOWING SWITCH TO INTEGRASE INHIBITOR-BASED ART

#### Jordan E. Lake

University of Texas Health Science Center Houston Houston, TX, USA

Disclosure:

 Self: Consulting or advisor fees from Merck & Co, Inc., Gilead Sciences To self, paid to my institution: Research grant/grant pending from Gilead Sciences

### **Results I**

972 adults switched to INSTI at median 7.8 years after parent trial entry. 691 had suppressed HIV-1 RNA at time of switch:

-82% male, 45% non-white

-Median age 51 years, CD4<sup>+</sup> T cell count 610 cells/µL, and BMI 26 kg/m<sup>2</sup>

-63% switched from PI, 35% from NNRTI

-289 switched to RAL, 204 to EVG and 198 to DTG (median follow-up 1.8 years)



### **Results II**

#### • In sex-stratified, adjusted models:

-White or black race, age  $\ge 60$  and BMI  $\ge 30$  kg/m<sup>2</sup> were associated with greater weight gain following switch among women

-Age ≥60 was the greatest risk factor among men

• DTG associated with greatest increase in annual weight gain.

|                                                                             | <b>DTG</b> | <b>EVG</b> | <b>RAL</b> |  |  |
|-----------------------------------------------------------------------------|------------|------------|------------|--|--|
|                                                                             | (n=198)    | (n=204)    | (n=289)    |  |  |
| Pre-INSTI                                                                   | 0.2        | 0.5        | 0.5        |  |  |
|                                                                             | (0.11)     | (0.008)    | (<0.0001)  |  |  |
| Post-INSTI                                                                  | 1.3        | 0.9        | 0.3        |  |  |
|                                                                             | (<0.0001)  | (<0.0001)  | (0.045)    |  |  |
| Pre-post 1.0 0.5 -0.2<br>difference (0.0009) (0.11) (0.37)                  |            |            |            |  |  |
| kg/year (p value)<br>DTG=dolutegravir, EVG=elvitegravir,<br>RAL=raltegravir |            |            |            |  |  |

## INTEGRASE STRAND TRANSFER INHIBITORS ARE ASSOCIATED WITH WEIGHT GAIN IN WOMEN

#### **Anne Marie Kerchberger**

Emory University Atlanta, GA, USA

Disclosure: Nothing to Disclose





## CROI 2019: PrEP

- F/TAF vs F/TDF
- dual bNAb and penile exposure
- TAF/EVG vaginal implant
- PrEP retention/persistence in the US

### THE PHASE 3 DISCOVER STUDY: DAILY F/TAF OR F/TDF FOR HIV PREEXPOSURE PROPHYLAXIS

#### **Brad Hare**

Kaiser Permanente San Francisco Medical Center San Francisco, CA, USA

Disclosure: Nothing to Disclose



#### **DISCOVER** Participant Disposition



CROI 2019 feedback: www.i-Basecinforetion, HIV infection, death.

#### Baseline Demographics and HIV Risk Factors

|                     |                                              | F/TAF<br>n=2694 | F/TDF<br>n=2693 |
|---------------------|----------------------------------------------|-----------------|-----------------|
| Demographics        | Median age, y (range)                        | 34 (18–76)      | 34 (18–72)      |
|                     | Race, n (%)                                  |                 |                 |
|                     | White                                        | 2264 (84)       | 2247 (84)       |
|                     | Black*                                       | 240 (9)         | 234 (9)         |
|                     | Asian                                        | 113 (4)         | 120 (5)         |
|                     | Hispanic or Latinx ethnicity, n (%)          | 635 (24)        | 683 (25)        |
|                     | Proportion TGW, n (%)                        | 45 (2)          | 29 (1)          |
| HIV risk factors, % | ≥2 condomless anal sex (receptive), past 12W | 60              | 58              |
|                     | Rectal gonorrhea, past 24W                   | 10              | 10              |
|                     | Rectal chlamydia, past 24W                   | 13              | 12              |
|                     | Syphilis, past 24W                           | 9               | 10              |
|                     | Recreational drug use, past 12W              | 67              | 67              |
|                     | Binge drinking <sup>†</sup>                  | 23              | 22              |
|                     | Taking F/TDF for PrEP at baseline            | 17              | 16              |

CROI 2019 feedback: www.i-Base.info

#### DISCOVER Primary Endpoint Analysis: HIV Incidence



F/TAF is noninferior to F/TDF for HIV prevention

CROh2019 feedbacknoww.i-Base.info

UK-CAB April 2019 43

#### **DISCOVER Adherence and Resistance Analyses of HIV Infections**



- 7 F/TAF infections: 1 suspected baseline infection, 5 low levels of TFV-DP in DBS,1 medium level
- 15 F/TDF infections: 4 suspected baseline infections, 10 low levels of TFV-DP in DBS, 1 high level
- In a sensitivity analysis that excluded suspected baseline infections, noninferiority was maintained (0.55 [0.20, 1.48])

| n                         | F/TAF<br>n=7         | F/TDF<br>n=15      |  |  |  |
|---------------------------|----------------------|--------------------|--|--|--|
| Resistance genotyped*     | 6                    | 13                 |  |  |  |
| Resistance to study drugs |                      |                    |  |  |  |
| FTC                       | 0                    | 4†                 |  |  |  |
| TFV                       | 0                    | 0                  |  |  |  |
| ections.                  | with resistance were | suspected baseline |  |  |  |

CROI 2019 feedback: www.i-Base.info

#### Comparing DISCOVER Results to HIV Infection Rate In MSM at HIV Risk but Not on PrEP



## PROTECTION AGAINST PENILE OR INTRAVENOUS SHIV CHALLENGES BY bNAb 10-1074 OR 3BNC117

#### **David A. Garber**

U.S Centers for Disease Control and Prevention Atlanta, GA, USA

Disclosure: Nothing to Disclose



### bNAb protection against intravenous SHIV infection - 10-

| Group | bNAb                 | Dose               | Route    | Ν |
|-------|----------------------|--------------------|----------|---|
| 1     | 10-1074 +<br>3BNC117 | 10mg/kg<br>10mg/kg | SC<br>SC | 5 |
| 2     | Control              |                    |          | 2 |



 No differences between groups for peak <u>vRNA</u> or AUC

| Number | OTSHIV | A D 8 - E O | cnallenges |
|--------|--------|-------------|------------|
|        |        |             |            |

a h a lla n n a a

Normalian a COLLIN

|                   | Median | Range |
|-------------------|--------|-------|
| 10-1074 + 3BNC117 | 5      | 4 - 9 |
| Control           | 1      | 1-1   |

Cynomolgus macaques; 150 TCID<sub>50</sub> challenge dose

CROI 2019 feedback: www.i-Base.info

### **Summary and Conclusions**

- A single SC administration of 10-1074 (10mg/kg) or 10-1074 + 3BNC117 (10mg ea/kg) protected macaques against repeated penile or IV SHIV challenges for a median of 15.5 or 5 weeks, respectively.
- Protection in the 10-1074 + 3BNC117 group appears due to 10-1074, which persisted relatively longer in vivo
- The plasma levels of 10-1074 associated with breakthrough infection are similar among all major mucosal routes of HIV acquisition (0.10 – 0.5 µg/ml) and will facilitate dose selection for humans
- Higher level for IV infection (1.0 µg/ml) may reflect relatively higher challenge virus dose
- Our findings support the continued development of 10-1074 as a long-acting prevention for men, women and persons who inject drugs
   CROI 2019 feedback: www.i-Base.info
   UK-CAB April 2019

## PROTECTION AGAINST VAGINAL SHIV INFECTION WITH AN INSERT CONTAINING TAF AND EVG

#### **Charles Dobard**

U.S. Centers for Disease Control and Prevention Atlanta, GA, USA

Disclosure: Nothing to Disclose



#### TAF/EVG inserts administered 4h prior to SHIV exposure protects macaques against vaginal infection



### PERSISTENCE WITH HIV PREEXPOSURE PROPHYLAXIS IN THE UNITED STATES, 2012-2016

#### Ya-Lin A. Huang

U.S. Centers for Disease Control and Prevention Atlanta, GA, USA

Disclosure: Nothing to Disclose

## Among commercially insured PrEP users, men persisted longer than women



## Among Medicaid insured PrEP users, men persisted longer than women



## Among commercially insured PrEP users, persistence increased with age



#### Among Medicaid insured PrEP users, younger users persisted for less time than older users



## Among Medicaid insured PrEP users, black users persisted for less time than white users



## Thanks

### Questions...

CROI 2019 feedback: www.i-Base.info